Left-ventricular Contraction and Relaxation of Donation after Circulatory Death Hearts Remain Stable During Early Reperfusion after Ex vivo Machine Perfusion with HTK-N but not with Blood

KARDIOTECHNIK Ausgabe:
02-2023

Autor:innen

L. Saemann1,2, F. Hoorn2, P. Kraft2, A. Großkopf1, G. Veres1,2, F. Wenzel3, S. Korkmaz-Icöz1,2, M. Karck2, A. Simm1, G. Szabo1,2

1 Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany (Director: Prof. Dr. Gábor Szabó)

2 Department of Cardiac Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany

3 Faculty Medical and Life Sciences, Furtwangen University, 78054 Villingen-Schwenningen, Germany

Hauptautor:in

Dr. Lars Saemann Ernst-Grube-Straße 40

06120 Halle, Germany

E-Mail: lars.saemann@uk-halle.de

Lars Saemann studierte Molekulare und Technische Medizin (B.Sc.) und absolvierte den kardiotechnischen Masterstudiengang Technical Physician (M.Sc.) an der Hochschule Furtwangen und arbeitete dann als Doktorand (Dr. sc. hum.) in der herzchirurgischen Forschung an der Klinik für Herzchirurgie, Universitätsklinikum Heidelberg. Mittlerweile forscht Lars Saemann als PostDoc an der Klinik für Herzchirurgie, Universitätsklinikum Halle (Saale) mit den Schwerpunktbereichen Organprotektion, Herztransplantation, Spenderherzperfusion sowie pharmakologische und perfusionsbasierte (Re-)konditionierung suboptimaler Spender und deren Herzen.

Zusammen­fassung

Einleitung: Um die Anzahl an möglichen Herztransplantationen zu erhöhen, werden zunehmend Herzen von sogenannten Donation after Circulatory Death (DCD)-Spendern zur Therapie von Herzversagen im Endstadium transplantiert. In der klinischen Anwendung werden DCD-Herzen mittels Ex-vivo-Maschinenperfusion (EVMP) mit normothermem Blut des Organspenders schlagend transportiert. Nichtsdestotrotz haben wir in einem DCD- Schweinemodell gezeigt, dass EVMP mit hypothermer kristalloider Histidin-Tryptophan-Ketoglutarat-N-Lösung statt Blut die linksventrikuläre Kontraktilität und Relaxation besser konserviert. Es blieb jedoch weiterhin unbekannt, ob sich die linksventrikuläre Kontraktilität und Relaxation von DCD-Herzen während der frühen Reperfusion nach EVMP verändert oder konstant bleibt.

Material und Methoden: Wir haben in einem DCD-Schweinemodell Herzen für die Dauer von 4 Stunden entweder mit normothermer oxygenierter Blutperfusion (BP-Gruppe; n = 6) oder mit hypothermer oxygenierter HTK-N-Perfusion (HTK-N-Gruppe; n = 6) versorgt. Im Anschluss wurden die Herzen beider Gruppen für 2 Stunden mit frischem Blut reperfundiert. Währenddessen wurde nach 30 min, 60 min und 120 min die linksventrikuläre Kontraktilität bei einem linksventrikulären Füllvolumen (LVV) von 10 ml und 20 ml bestimmt.

Ergebnisse: Die maximale Druckanstiegsrate (dp/dtmax) bei 10 ml LVV sank stufenweise von 1442±152 mmHg/s bei 30 min auf 872±180mmHg/s (95 % CI der Mittelwertedifferenz [MWD]: 1242; -103) bei 120 min Reperfusion nach BP und blieb in der HTK-N-Gruppe konstant. Bei 20 ml LVV haben sich bei dp/dtmax in beiden Gruppen keine wesentlichen Unterschiede während der Reperfusionszeit gezeigt. Die maximale Drucksenkungsrate (dp/dtmin) hat sich bei 10 ml LVV nur in der BP-Gruppe von -935±236 mmHg/s nach 30 min auf -522±67 mmHg/s nach 120 min (95 %CI MWD: -347; 1172) Reperfusion verschlechtert und bei 20 ml LVV in beiden Gruppen nur kleine Unterschiede gezeigt.

Fazit: Die linksventrikuläre Kontraktion und Relaxation von DCD-Schweineherzen verschlechtert sich während der Reperfusion (120 min) nach EVMP mit Blut und bleibt nach EVMP mit HTK-N konstant. Nichtsdestotrotz können höhere LVVs die reduzierte Kontraktilität und Relaxation partiell aufheben.

Keywords

Heart transplantation, Donation after Circulatory Death, machine perfusion, reperfusion, Histidine-Tryptophane-Ketoglutarate-N, Custodiol-N

HIGHLIGHTS

  • After ex vivo machine perfusion of porcine donation after circulatory death hearts with normothermic blood but not with the hypothermic histidine-tryptophane-ketoglutarate-N solution, left-ventricular pressure increment and decrement are impaired during early reperfusion.
  • An increased left-ventricular preload can reverse this effect.

INTRODUCTION

The organ shortage is a limiting factor for heart transplantation (HTX). Thus, many transplant centers have started to accept hearts donated after circulatory death (DCD) [1]. Unlike donation after brain death, in DCD donors, the life-sustaining therapy of a potential DCD donor is withdrawn. As a consequence of the subsequent breathing arrest, the whole body of the donor becomes ischemic [2]. Due to global ischemia, the heart cannot maintain circulation in the body and circulatory death occurs [3]. According to local regulations, a specific period has to elapse before organ procurement. Therefore, DCD hearts are exposed to warm ischemia, known as warm ischemic time (WIT), before harvesting [4]. DCD hearts are mainly maintained by ex vivo machine perfusion (EVMP) with normothermic donor blood [1]. Nevertheless, we demonstrated in a porcine DCD model that EVMP with the hypothermic, crystalloid Histidine-Tryptophane-Ketoglutarate-N solution instead of blood is superior to preserving left-ventricular contractility, relaxation and coronary microcirculation during early reperfusion [5]. However, what remains unknown is whether left-ventricular contractility and relaxation change by reperfusion time after EVMP of DCD hearts.

MATERIAL AND METHODS

Animals and Anesthesia

The animals received humane care. We sedated healthy pigs (40-50 kg bodyweight) with intramuscular injection of Ketamine (22.5 mg/kg; Bremer Pharma, Warburg, Germany) and Midazolam (0.375 mg/kg; Hameln pharma plus, Hameln, Germany). Anesthesia was maintained intravenously with Pentobarbital-Sodium (15 mg/kg/h; Boehringer Ingelheim Vetmedica, Ingelheim, Germany).

Donation after Circulatory Death model and organ procurement

According to a previously published model, we induced circulatory death by the termination of mechanical ventilation [5]. Within the subsequent period of 30 min, we collected blood and harvested the heart. After a total WIT of 30 min, we flushed the DCD-hearts with 2 l of cold (4°C) Custodiol solution (Köhler Chemie GmbH, Bensheim, Germany), followed by mounting on the perfusion system (fig. 1).

Fig. 1: Workflow; DCD: Donation after Circulatory Death

Study groups and machine perfusion 

We maintained DCD hearts either by EVMP with normothermic blood of the organ donor (BP group, n=6) or 4 °C, oxygenated HTK-N (HTK-N group, n=6; Köhler Chemie GmbH, Bensheim, Germany) for 4 hours in Langendorff fashion through the ascending aorta (fig. 2). The perfusion system consisted of an open venous reservoir, a hollow fiber membrane oxygenator with an integrated heat exchanger (Affinity Pixy, Medtronic, Minneapolis, USA) and 1/4” x 3/32” tubing. During reperfusion in both groups and during 4 h of EVMP in the BP group, the system was primed with 800 mL of non-diluted donor blood, added with 5000 i.E. Heparin, 250 mg Sodium-Prednisolone, and 25 mL Mannitol 15%. Hearts were perfused with a perfusion pressure of 50 mmHg in the BP group based on experimental pre-trials, and only 20 mmHg in the HTK-N group, concerning the increased risk of edema formation during crystalloid perfusion. Arterial and venous blood gas, including lactate, were measured every 30 min with a point-of-care analyzer (RAPID Point 500, Siemens) to maintain pH of 7.35-7.45, paO2 of 200 mmHg and paCO2 of 40-50 mmHg. If necessary, hearts were paced at 80 beats per minute in BP and during reperfusion. During reperfusion, perfusion pressure was adjusted to 60 mmHg.

Fig. 2: Reperfusion and functional analysis (created with BioRender.com)

Functional assessment during reperfusion 

After maintenance perfusion, we reperfused the hearts of both groups for 120 min with fresh blood to mimic transplantation. During reperfusion, we evaluated left-ventricular contractility and relaxation using a balloon catheter inserted through the mitral valve. To determine a potential time-dependent effect of reperfusion, we measured the end-systolic pressure (ESP), maximal pressure increment (dp/dtmax) and maximal pressure decrement (dp/dtmin) after 30, 60 and 120 min of reperfusion at 10 and 20 mL of left-ventricular filling volume (LVV). We also analyzed the relative time-dependent change of contractility markers using the measurement after 30 min as a baseline value, thereby creating relative ESP, dp/dtmax, and dp/dtmin.

Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics for Windows (Version 25.0, IBM Corp. Armonk, NY, USA). Results are expressed as mean ± standard error. We tested for homogeneity of variances by the Levene test. Data were analyzed using a one-way analysis of variance for multiple comparisons with Tukey adjustment in case of variance homogeneity and Games-Howell adjustment in case of variance inhomogeneity. For analysis of relative contractility, we applied a two-tailed unpaired classical t-test in case of variance homogeneity and a Welch t-test in case of variance inhomogeneity. We compared the data using 95% confidence intervals (CI) of the difference in means (DIM) and p-values. A p-value < 0.05 was considered statistically significant. Relative contractile parameters were calculated by normalizing contractility at 60 and 120 min or reperfusion to 30 min of reperfusion. Therefore, they allow a comparison of the shift of ESP, dp/dtmax, and dp/dtmin by time.

RESULTS

Left-ventricular contractility and relaxation: Effects of reperfusion time and left-ventricular filling

Over time, the end-systolic pressure (ESP) remained constant at 10 mL of LVV in the BP and HTK-N group (fig. 3A). At an LVV of 20 mL, the ESP improved slightly between 30 and 60 min (155±9 vs. 176±7 mmHg; 95%CI DIM: -8 – 50) of reperfusion (fig. 3B) in the HTK-N group but not in the BP group. The maximal slope of pressure increment (dp/dt- max) at 10 mL of LVV decreased stepwise from 1442±152 mmHg/s at 30 min to 872±180 mmHg/s at 120 min (95%CI DIM: 1242 – -103) of reperfusion and remained constant in the HTK-N group (fig. 3C). At 20 mL of LVV, dp/dtmax did not show major differences by reperfusion time in both groups (fig. 3D). The maximal slope of pressure decrement (dp/ dtmin) impaired from -935±236 mmHg/s at 30 min to -522±67 mmHg/s at 120 min (95%CI DIM: -347 – 1172) of reperfusion time in the BP group at 10 mL of LVV. In the HTK-N group, dp/dtmin improved from 30 to 60 min of reperfusion (-1032±151 vs. -1416±384 mmHg/s; 95%CI DIM: -1460 – 689) followed by a slight impairment to 120 min (-1416±384 vs. -1180±293 mmHg; 95%CI DIM: -838 – 1311) at 10 mL of LVV. At 20 mL of LVV, dp/dtmin did not majorly change within 120 min of reperfusion in BP. In the HTK-N group, dp/ dtmin minorly improved from 30 to 60 min of reperfusion and then at 120 min decreased to the level shown at 30 min.

Fig. 3: Time and load dependent left-ventricular contractility; dp/dtmax: maximal slope of pressure increment; dp/dtmin: maximal slope of pressure decrement; ESP: end-systolic pressure; HTK-N: Histidine-Tryptophane-Ketoglutarate-N; *p<0.05.

Shift of normalized left-ventricular contractility and relaxation: blood vs. HTK-N perfusion

Relative ESP at 20 mL of LVV after 60 min (98±3% vs. 116±9%; 95%CI DIM: -38 – 3) and 120 min (99±7% vs. 113±9%; 95%CI DIM: -39 – 13) of reperfusion was increased in the HTK-N group compared to the BP group (fig. 4B). At an LVV of 10 mL, relative dp/dtmax was higher in HTK-N than in BP, especially at 120 min of reperfusion (79±17% vs. 131±21%; 95%CI DIM: -48 – 9; fig. 4C). At 20 mL, the relative dp/dtmax did not majorly differ between both groups (fig. 4D). Relative dp/dtmin highly increased in HTK-N compared to BP with 10 mL of LVV at 60 min but especially after 120 min (79±17% vs. 131±22%; 95%CI DIM: -114 – 9) of reperfusion (fig. 4E).

Fig. 4: Course of normalized contractile parameters of blood compared to HTK-N perfusion; Time and load dependent left-ventricular contractility; dp/dtmax: maximal slope of pressure increment; dp/dtmin: maximal slope of pressure decrement; ESP: end-systolic pressure; HTK-N: Histidine- Tryptophane-Ketoglutarate-N; *p<0.05;*1p<0.1

DISCUSSION

We could already show in previous experiments that after BP, contractility and relaxation are impaired compared to perfusion with hypothermic, oxygenated HTK-N due to increased ischemia/reperfusion (I/R) injury [5]. I/R injury develops over time during the early reperfusion period [6]. Thus, the reason for a further decrease of dp/dtmax and dp/dtmin by reperfusion time after BP could be a further increasing reperfusion injury that does not occur after HTK-N perfusion. Unlike BP, after HTK-N perfusion, dp/dtmax, and dp/dtmin remain stable, presumably because I/R injury is not only less profound but is also not further increasing – at least not during the observed reperfusion time of 2 h.

HTK-N contains several pharmacological agents to protect the myocardium from I/R injury, such as membrane-permeable and non-permeable iron chelators LK-614 and deferoxamine, which are known to reduce the production of reactive oxygen species [7]. Furthermore, it contains endothelial protective amino acids, such as L-Alanine, to reduce Hydrogen-Peroxide mediated oxidative stress and to stimulate the antioxidant defense enzyme Heme Oxygenase-1 and the vasodilatory amino acid L-Glycine [8]. Compared to the traditional HTK solution, the chloride concentration in HTK-N was reduced because it was shown in an in vitro model of vascular I/R injury that it mediates cellular injury during reperfusion [9]. The buffer substance Histidine was also partially substituted by Nα-Acetyl-Histidine to retain the buffer capacity but reduce cytotoxicity [7].

Table 1: Composition of HTK-N

The finding that an impaired dp/dtmax and dp/dtmin after ischemia can be partially reversed by elevated left-ventricular filling volumes is consistent with the results from Takano et al. in an experimental series on myocardial ischemia in dogs and from Tayama et al. in pigs [10,11]. Another experimental series is needed to perform molecular biological analysis from tissue samples at multiple points in time during reperfusion to determine the potential progress of I/R injury during reperfusion of DCD hearts. Regarding the progress of functional parameters during reperfusion it is known from the literature that beyond 2 hours of reperfusion, the impact of I/R injury most likely reaches a plateau and does not lead to a further functional decrease of the left ventricle [6].

LIMITATIONS

A limitation of the present work is that we did not perform an orthotopic HTX. Nevertheless, this is also beneficial because in an isolated heart perfusion model, confounding factors that would occur in an in vivo experiment can be minimized, thus reducing the number of animals and making small differences visible simultaneously.

CONCLUSION

Left-ventricular contraction and relaxation of porcine DCD hearts decrease over time during early reperfusion after EVMP with normothermic blood and remain stable after EVMP with hypothermic, oxygenated HTK-N solution. Nevertheless, higher left-ventricular filling volumes can reverse the impaired tensioning and relaxation.

ETHICAL APPROVAL

The animal study was approved by the Ethics Committee “Regierungspräsidium Karlsruhe” (G150/19; 4 July 2019).

CONFLICT OF INTERESTS

Nothing to declare.

ACKNOWLEDGMENTS

Lars Saemann is a fellow of the Josef Güttler Scholarship by the German Society for Cardiovascular Perfusion (DGfK).

Literatur

  1. Messer S, Cernic S, Page A, Berman M, Kaul P, Colah S et al. A 5-year single-center early experience of heart transplantation from donation after circulatory-determined death donors. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation 2020; 39(12):1463–75.
  2. Saemann L, Guo Y, Ding Q, Zhou P, Karck M, Szabó G et al. Machine perfusion of circulatory determined death hearts: A scoping review. Transplantation reviews (Orlando, Fla.) 2020; 34(3):100551.
  3. Messer S, Page A, Axell R, Berman M, Hernández-Sánchez J, Colah S et al. Outcome after heart transplantation from donation after circulatory-determined death donors. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation 2017; 36(12):1311–18.
  4. Saemann L, Karck M, Korkmaz-Icöz S, Wenzel F, Szabó G. Ethical Decision Diagrams on Donation After Cardiocirculatory Death Heart Transplantation Considering Organ Preservation Techniques. Transplant Direct 2020; 6(11):e617.
  5. Saemann L, Korkmaz-Icöz S, Hoorn F, Veres G, Kraft P, Georgevici A-I et al. Reconditioning of circulatory death hearts by ex-vivo machine perfusion with a novel HTK-N preservation solution. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation 2021; 40(10):1135–44.
  6. Tanaka M, Mokhtari GK, Terry RD, Gunawan F, Balsam LB, Hoyt G et al. Prolonged cold ischemia in rat cardiac allografts promotes ischemia-reperfusion injury and the development of graft coronary artery disease in a linear fashion. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation 2005; 24(11):1906–14.
  7. Rauen U, Klempt S, Groot H de. Histidine-induced injury to cultured liver cells, effects of histidine derivatives and of iron chelators. Cellular and molecular life sciences: CMLS 2007; 64(2):192–205.
  8. Grosser N, Oberle S, Berndt G, Erdmann K, Hemmerle A, Schröder H. Antioxidant action of L-alanine: heme oxygenase-1 and ferritin as possible mediators. Biochemical and Biophysical Research Communications 2004; 314(2):351–5. Available from: URL: http:// sciencedirect.com/science/article/pii/ S0006291X03027165.
  9. Veres G, Radovits T, Merkely B, Karck M, Szabó G. Custodiol-N, the novel cardioplegic solution reduces ischemia/reperfusion injury after cardiopulmonary bypass. Journal of cardiothoracic surgery 2015; 10:27.
  10. Takano H, Glantz SA. Left ventricular contractility predicts how the end-diastolic pressure-volume relation shifts during pacing-induced ischemia in dogs. Circulation 1995; 91(9):2423–34.
  11. Tayama M, Solomon SB, Glantz SA. Effect of lidocaine on left ventricular pressure-volume curves during demand ischemia in pigs. Am J Physiol 1998; 274(6):H2100-9.

Willkommen zur neuen Webseite

Nach über einem ¾ Jahr der Planung, intensiven Meetings, Codierung und Schreibarbeit ist am 13.01.2025 ist unsere neue Website live gegangen und wir sind stolz, hier ein neues Zuhause für unsere Mitglieder geschaffen zu haben. Zukünftig soll sie zur zentralen Plattform des Austauschs in unserer Community werden. Dafür arbeiten wir im Hintergrund an spannenden Erweiterungen.

Ein Highlight wird ein eigener „News“-Bereich sein, der euch stets über aktuelle Entwicklungen rund um Perfusion und technische Medizin informiert. Schaut regelmäßig vorbei und bringt euch ein – wir freuen uns auf eure Anregungen!

Anmeldung

Achtung: Mehrfache Anforderungen beschleunigen die Mailzustellung nicht.
Als Mitglied der DGPTM können Sie sich mit der bei uns hinterlegten Mailadresse oder Ihrem Benutzernamen ganz einfach mit einem Einmalpasswort einloggen. Dieses bekommen Sie per Mail geschickt. Sie werden danach direkt in den Internen Bereich geleitet.
Ihr Benutzername besteht aus den ersten beiden Buchstaben Ihres Vornamens und Ihrem Nachname (ä=ae ect).